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Abstract
The elastic constants of lonsdaleite C, Si and Ge are calculated by using the
plane-wave pseudopotential method in the scheme of density functional theory
and the local density approximation. For comparison, the elastic constants of
the cubic diamond phases of these elements, zincblende SiC and 6H–SiC, are
also calculated.

1. Introduction

The elastic constants of solids give important information on their mechanical and dynamical
properties. These parameters provide a link between the mechanical and dynamic behaviour
of crystals, and may be used as a means of probing the inter-atomic forces. In particular, they
provide information on the stability and stiffness of materials. Although various experimental
techniques are available nowadays for the measurement of elastic constants, such as ultrasonic
wave propagation, neutron scattering and Brillouin scattering etc, the theoretical calculation
of elastic constants is also indispensable due to the difficulties in preparing suitable specimens
for many materials. First-principles calculation has demonstrated its success in theoretical
studies of elastic properties on various materials [1–6].

The lonsdaleite phases of C, Si and Ge are fantastic new crystalline structures compared
to their common cubic diamond phases. However, only the poly-crystal of lonsdaleite C has
been fabricated successfully. To date, the bulk solid forms of lonsdaleite Si and Ge are still
unavailable experimentally, despite the existence of these structures having been confirmed by
many experimental observations [7–14].

In this paper, we investigate the elastic behaviour and the stability of the structure of
lonsdaleite C, Si and Ge by using plane-wave pseudopotential (PW-PP) calculations. The
accuracy and reliability of our realization are tested by calculating their well known cubic
phases and the relevant SiC phases.
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2. Details of the calculations

Our PW-PP calculations are realized by using the ABINIT computer code [15]. The LDA
pseudopotentials used in these calculations are the Hartwigsen–Goedecker–Hutter (HGH)
relativistic separable dual-space Gaussian pseudopotentials [16]. The equilibrium properties
of these lonsdaleite phases can be found in a separate paper [17].

The theoretical elastic constants are calculated from the energy variation by applying small
strains to the equilibrium lattice configuration. The elastic energy of a solid under strain is
given by

�E = V

2

6∑
i=1

6∑
j=1

Ci j ei e j (1)

where V is the volume of the undistorted lattice cell, �E is the energy increment from the
strain with vector e = (e1, e2, e3, e4, e5, e6), and C is the matrix of the elastic constants. For
cubic phases there are three independent elastic constants, C11, C12 and C44. The hexagonal
phases add two more independent elastic constants, C13 and C33. The cubic diamond structure
is constructed by interpenetrating two face-centred cubic Bravais lattices. Its primitive vectors
are defined as (
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where a is the lattice constant. The primitive vectors of the hexagonal phase are defined by(
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where a and c are lattice constants. The primitive vectors ai (i = 1, . . . , 3) are transformed
to the new vectors under strain by(
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where ε is the strain tensor. This links with the strain vector e by
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In the calculation of the elastic constants for the cubic phase, we apply the tri-axial shear
strain e = (0, 0, 0, δ, δ, δ) to the crystal. Then, C44 can be calculated from

�E

V
= 3

2
C44δ

2. (6)

Similarly, the shear modulus C ′ = 1
2 (C11 − C12) is calculated from the volume-conserving

orthorhombic strain e = (δ, δ, (1 + δ)−2 − 1, 0, 0, 0) by using

�E

V
= 6C ′δ2 + O(δ3). (7)

The bulk modulus B can be obtained by using the strain under hydrostatic pressure e =
(δ, δ, δ, 0, 0, 0):

�E

V
= 9

2
Bδ2. (8)
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Then C11 and C12 are hence given by

C11 = 3B + 4C ′

3
, (9)

C12 = 3B − 2C ′

3
. (10)

The calculation of the elastic constants for the hexagonal phases is a little more arduous.
Firstly, one applies the strain e = (δ, δ, 0, 0, 0, 0) to calculate C11 + C12:

�E

V
= (C11 + C12)δ

2. (11)

Then C11 − C12 is calculated using the strain e = (0, 0, 0, 0, 0, δ):
�E

V
= 1

4
(C11 − C12)δ

2. (12)

C33 can be obtained by using the strain e = (0, 0, δ, 0, 0, 0):
�E

V
= 1

2
C33δ

2. (13)

Also, C44 can be obtained by using the strain e = (0, 0, 0, δ, δ, 0):
�E

V
= C44δ

2. (14)

Under the condition of hydrostatic pressure, e = (δ, δ, δ, 0, 0, 0), the bulk modulus, B =
2
9 (C11 + C12 + 2C13 + C33/2), is calculated:

�E

V
= 9

2
Bδ2. (15)

Therefore, C13 is determined.
In this study, firstly 21 sets of �E/V ∼ δ data for each phase were obtained from PW-PP

calculations by varying δ from −0.02 to 0.02 in steps of 0.002. These data were fitted by
using a quadratic polynomial and then the relevant elastic constant was acquired from the
coefficient of the quadratic term in the corresponding equations (6)–(15). As an example, the
computational procedures for the elastic constants of lonsdaleite Si are illustrated in figure 1.
We found that the coordinate optimization of ions in the strained lattice is quite important
for achieving accurate results. The coordinate optimization of ions in the strained lattice is
realized using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) minimization algorithm by
taking into account the total energy as well as the gradients [18].

In the theoretical calculations of elastic constants we used a plane-wave energy cutoff
of 50.0 hartree and 4 × 4 × 4 and 4 × 4 × 2 Brillouin zone samplings, respectively, for
the diamond and lonsdaleite phases. These values will retain errors in the total energy of
0.001 hartree. In studies of the stability of the structures, the differences in energy between
various crystallographic configurations are usually quite small. Therefore, the cohesive
energies of cubic and hexagonal phases are calculated using a higher plane-wave energy cutoff
of 100 hartree, together with 8×8×8 and 10 ×10 ×6 Brillouin zone samplings, respectively,
for the diamond and lonsdaleite phases, to guarantee a consistent error in the total energy of
0.0001 hartree.

3. Numerical results

3.1. Elastic constants

Although experimental data for all the diamond phases of C, Si and Ge are available nowadays,
we also calculated the theoretical elastic constants of these cubic phases as the first step in the
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Figure 1. The calculation of the elastic constants of Lonsdaleite Si from the PW-PP ground-state
results under various strains: (a) C11 +C12; (b) C11 −C12; (c) C33; (d) C44; and (e) bulk modulus B .

present study. The reasons are twofold. Firstly, by comparing theoretical and experimental
data we can judge the applicability of the pseudopotentials in the present case. Secondly,
we can also test the methodological feasibilities of lattice deformation and ion-coordinate
optimization used in this work. We found that, without coordinate optimization, the results
of the determination of some elastic parameters may have an error as much as several tens of
per cent.

The calculated elastic constants for the cubic diamond phases of C, Si, Ge and zincblende
SiC are presented in table 1. The equilibrium geometries of diamond C, Si, Ge and zincblende
SiC can be found elsewhere [4, 17]. It is seen that the errors between our theoretical results and
the experimental results are generally within 5.0%, except for C12 of diamond C, which has
the much big error of 15.2%. The origin can be understood since C11 and C12 are determined
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Table 1. The elastic constants of diamond C, Si, Ge and zincblende SiC (in Mbar). The value in
parenthesis is the error (in per cent) of our theoretical result compared to the experimental data.

C11 C12 C44

PW-PP Exp. PW-PP Exp. PW-PP Exp. C ′

C 10.996(1.9) 10.79 [19] 1.428(15.2) 1.240 [19] 5.870(1.6) 5.780 [19] 4.784
Si 1.620(−2.4) 1.660 [20] 0.628(−1.9) 0.640 [20] 0.772(−3.0) 0.796 [20] 0.496
Ge 1.285(2.0) 1.260 [20] 0.457(3.9) 0.440 [20] 0.668(−1.3) 0.677 [20] 0.414
SiC 4.043 1.377 2.556 1.333

using associated methods, for both theoretical calculation and experiment. Since the value of
C11 is about eight times larger than that of C12, the larger numerical error is consequently hard
to avoid in the determination of C12.

The theoretical elastic constants of lonsdaleite C, Si and Ge from our PW-PP calculations
are given in table 2. Both the calculated and available experimental elastic constants of
hexagonal 6H–SiC are also listed to provide a qualitative evaluation of the reliability of the
present calculations. The PW-PP optimized lattice parameters of 6H–SiC in the calculation
are a = 0.3049 nm and c = 1.4956 nm, respectively. The theoretical lattice parameters
of lonsdaleite C, Si and Ge were accepted from [17]. It is seen that the errors between our
theoretical data and the experimental data for 6H–SiC fall within a reasonable range of −3.9
to 7.8%.

Figure 1 shows the existence of linear terms for the �E/V ∼ δ relations in the calculation
of C11 + C12, C33 and B . This means that the optimization procedure for the lattice parameters
in the previous study [17] is not perfect. From the relation �E/V = −0.0144δ + 4.365 95δ2

for the bulk modulus B , one obtains an energy minimum at δ ≈ 0.001 65. This indicates an
approximate error of about 0.165% for the published lattice parameters of lonsdaleite Si [17]
compared to the accurate equilibrium values.

3.2. Stability of structure

The relative stability of the structure of solids can be measured directly from the difference
in cohesive energy of the relevant phases. Plentiful information is also incorporated in their
elastic parameters. The Zener anisotropy factor A is an indicator of the degree of anisotropy in
the solid structure compared to the isotropic material. This can be calculated from the elastic
constants of the cubic phase:

A = 2C44

C11 − C12
. (16)

The procedure for the coordinate optimization of ions releases internal strain in the
deformed lattice configuration. From those optimized coordinates, the Kleinman internal-
strain parameter ζ [22] can be calculated as

ζ = (1 + δ)r0 − r

r0δ
(17)

where r and r0 are the distances between the two sub-lattices with and without strain,
respectively.

Table 3 lists the PW-PP calculated data of the difference in cohesive energy �EH−C

between hexagonal and cubic phases, the Zener anisotropy factor A,and the Kleinman internal-
strain parameter ζ of C, Si, Ge and 6H–SiC phases. Here, A and ζ are calculated from the
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Table 2. The elastic constants of lonsdaleite C, Si and Ge (in Mbar). The theoretical and experimental elastic constants of hexagonal 6H–SiC are
also listed to provide an evaluation of the qualitative reliability of the present calculations. Here, C66 = (C11 − C12)/2.

C11 C12 C13 C33 C44 C66

PW-PP Exp. PW-PP Exp. PW-PP Exp. PW-PP Exp. PW-PP Exp. PW-PP Exp. B

C 12.225 1.068 0.475 13.263 4.594 5.578 4.639
Si 1.940 0.553 0.420 2.065 0.448 0.693 0.970
Ge 1.556 0.375 0.277 1.693 0.411 0.591 0.740
6H–SiC 5.273 5.01 [21] 1.067 1.11 [21] 0.559 0.52 [21] 5.631 5.53 [21] 1.654 1.63 [21] 2.103 1.95 [21] 2.283
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Table 3. Some structure and mechanical parameters for C, Si, Ge and SiC phases.

A ζ �EH−C (meV)

C 1.227 0.107 51.7
Si 1.556 0.533 21.1
Ge 1.614 0.481 33.2
SiC 1.917 0.392 −2.0

elastic parameters of their respective cubic phases. Due to the inequality in the number of
atoms in the unit cells of the cubic and hexagonal phases, the difference in cohesive energy
�EH−C between the two poly-types is given for a pair of dissimilar atoms. It can be seen that all
the lonsdaleite phases of C, Si and Ge have higher cohesive energies than their corresponding
diamond phases, indicating that the diamond configuration is more stable. This is consistent
with the fact that the cubic phases of these elements are more easily fabricated. The table also
shows that 6H–SiC is more favoured than zincblende SiC from the viewpoint of energy, as is
found by experiment. Carbon has the largest energy difference between its two poly-types.
The energy differences of Ge, Si and SiC decrease progressively. A small energy difference
may cause a variation in lattice configuration. This explains the vast diversity in SiC and silicon
poly-types found to date. The Kleinman parameter of cubic C is the smallest, indicating that
the phase has quite a large resistance to bond bending. Materials with larger Zener anisotropy
factor tend to differ from cubic configuration, as is seen for SiC. The present results suggest
that the lonsdaleite phases of Si and Ge should be easier to prepare than the lonsdaleite phase
of C.

4. Conclusions

In conclusion, the elastic constants of lonsdaleite C, Si and Ge have been obtained by using
first-principles PW-PP calculations. The reliability of the theoretical data and the calculation
procedure are evaluated in detail compared to various experimental results. The stability of
the structure and other relevant properties of these lonsdaleite phases are also investigated.
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